organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyle 4-bromo-3-hydroxy-5,6,7,8tétrahydronaphtalène-2-carboxylate

Fatma Ben Amor,^a Asma Jmour,^b Ahmed Driss^a* et Farhat Rezgui^b

^aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar I, Tunis, Tunisie, et ^bLaboratoire de Chimie Organique, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar I, Tunis, Tunisie

Correspondence e-mail: ahmed.driss@fst.rnu.tn

Reçu le 1 juin 2007; accepté le 18 juin 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.047; wR factor = 0.120; data-to-parameter ratio = 13.6.

In the title compound, C₁₃H₁₅BrO₃, all non-H atoms lie on a mirror plane, except for two CH2 groups which are disordered equally on the two sides of the plane.

Littérature associée

Pour le contexte général du travail, voir: Kasibhatla et al. (2001). Pour structures associées, voir: Ben Amor & Jouini, 1999; Canty et al., 2004; Béji et al., 2005.

Partie expérimentale

Données cristallines

C13H15BrO3 $M_r = 299.16$ Monoclinique, C2/m a = 20.840 (6) Å b = 7.141 (3) Å c = 9.364 (3) Å $\beta = 114.77 \ (3)^{\circ}$

V = 1265.3 (8) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 3.24 \text{ mm}^{-1}$ T = 298 (2) K $0.40 \times 0.10 \times 0.10 \ \mathrm{mm}$

Collection de données

Diffractomètre Enraf-Nonius	1483 réflexions independantes
CAD-4	1070 réflexions avec $I > 2\sigma(I)$
Correction d'absorption: ψ scan	$R_{\rm int} = 0.013$
(North et al., 1968)	2 réflexions de référence
$T_{\min} = 0.410, \ T_{\max} = 0.723$	fréquence: 120 min
3614 réflexions mesurées	variation d'intensité: 4%

Affinement

$R[F^2 > 2\sigma(F^2)] = 0.047$	109 paramètres
$wR(F^2) = 0.120$	Paramètres des atomes H contraints
S = 1.15	$\Delta \rho_{\rm max} = 0.59 \ {\rm e} \ {\rm \AA}^{-3}$
1483 réflexions	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Tableau 1

Géometrie	des	liaisons	hydrogènes	(Å,	°).
-----------	-----	----------	------------	-----	-----

$\overline{D-\mathrm{H}\cdots A}$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O3-H3···O1	0.82	1.90	2.620 (5)	146

Collection des données: CAD-4 EXPRESS (Enraf-Nonius, 1994); affinement des paramètres de la maille: CAD-4 EXPRESS: reduction des données: XCAD4 (Harms & Wocadlo, 1995); programme(s) pour la solution de la structure: SHELXS97 (Sheldrick, 1997); programme(s) pour l'affinement de la structure: SHELXL97 (Sheldrick, 1997); graphisme moléculaire: DIAMOND (Brandenburg, 1998); logiciel utilisé pour preparer le matérial pour publication: SHELXL97.

Des documents complémentaires et figures concernant cette structure peuvent être obtenus à partir des archives électroniques de l'UICr (Référence: DN2193).

Références

- Béji, F., Ben Amor, F., Amri, H. & Driss, A. (2005). J. Soc. Chim. Tunis. 7, 277-283
- Ben Amor, F. & Jouini, T. (1999). Acta Cryst. C55, 499-501.
- Brandenburg, K. (1998). DIAMOND. Version 2.0. Université de Bonn, Allemagne.
- Canty, A. J., Honeyman, R. T., Skelton, B. W. & White, A. H. (2004). Acta Cryst. C60, 098-099.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, Les Pays-Bas.
- Harms, K. & Wocadlo, S. (1995). XCAD4. Université de Marburg, Allemagne. Kasibhatla, S. R., Bookser, B. C., Xiao, W. & Erion, M. D. (2001). J. Med. Chem. 44, 613-618.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Université de Göttingen, Allemagne.

supplementary materials

Acta Cryst. (2007). E63, o3314 [doi:10.1107/S1600536807029777]

Ethyle 4-bromo-3-hydroxy-5,6,7,8-tétrahydronaphtalène-2-carboxylate

F. Ben Amor, A. Jmour, A. Driss et F. Rezgui

Comment

Les esters du 4-bromo-3-hydroxynaphtalène ont été rarement étudiés bien qu'ils soient à la base de composés à intérêt biologique (Kasibhatla *et al.*, 2001).

La molécule $C_{13}H_{15}BrO_3$ est caracterisée par la présence d'un noyau 5,6,7,8 – tétrahydronaphtalène ayant le groupe phényle trisubstitué en C2, C3 et C4 portant respectivement une fonction ester, un groupe hydroxyle et un atome de brome (Fig. 1). Ces trois derniers substituants et le noyau phényle sont situés dans un plan miroir. Les atomes de carbone C5, C8, C9 et C10 sont situés dans ce plan miroir. Les atomes de carbone C6 et C7 sont statistiquement distribués par rapport à ce plan cristallographique. Les valeurs des longueurs des liaisions C4—Br1 (1,908 (5) Å), C11=O1 (1,217 (6) Å) et la valeur moyenne des distances C—O (1,381 (7) Å) sont en accord avec celles des composés possédant des liaisons de ce type (Ben Amor & Jouini, 1999; Canty *et al.*, 2004; Béji *et al.*, 2005).

Experimental

A une solution de 3-hydroxy-5,6,7,8 – tétrahydronaphtalène-2-carboxylate d'éthyle (2 mmol) dans 2 ml d'acide *ac*étique est ajoutée goutte-à -goutte une solution de brome (2 mmol) dans 2 ml d'acide *ac*étique sous agitation magnétique, à température ambiante. Après deux heures, le mélange résultant a été dilué dans l'eau et extrait avec du dichlorométhane. La phase organique a été lavée avec de l'eau jusqu'á neutralité. Le résidu a été purifié sur une colonne de chromatographie (éther de pétrole) pour obtenir á l'état très pur le 4-bromo-3-hydroxy-5,6,7,8 – tétrahydronaphtalène-2-carboxylate d'éthyle.

Refinement

L'ensemble des atomes d'hydrogène ont été fixés géométriquement et traités en utilisant un `riding model' avec des distances C—H = 0.93 Å (C_{aromatique}), 0.97 Å (C_{methylène}), 0.96 Å (CH₃) et O—H = 0.82 Å avec des facteurs de température $U_{iso}(H)$ = 1.2 U_{eq} (C_{aromatique}, C_{methylène}, O) et $U_{iso}(H)$ = 1.5 U_{eq} (CH₃).

Figures

Fig. 1. Représentation de la molécule $C_{13}H_{15}BrO_3$. Les ellipsoides d'agitation thermique représentent 30% de probabilité de présence.

Ethyl 4-bromo-3-hydroxy-5,6,7,8-tetrahydronaphthalene-2-carboxylate

 $F_{000} = 608$

 $D_{\rm x} = 1.570 {\rm ~Mg} {\rm ~m}^{-3}$ Mo Kα radiation

Cell parameters from 25 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 10.5 - 14.7^{\circ}$

 $\mu = 3.24 \text{ mm}^{-1}$

T = 298 (2) K

Plate, colourless $0.40 \times 0.10 \times 0.10 \text{ mm}$

Crvstal	data
Cryster	cicicic

C₁₃H₁₅BrO₃ $M_r = 299.16$ Monoclinic, C2/m Hall symbol: -C 2y a = 20.840 (6) Å b = 7.141(3) Å c = 9.364(3) Å $\beta = 114.77 (3)^{\circ}$ V = 1265.3 (8) Å³ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.013$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 27.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.2^{\circ}$
T = 298(2) K	$h = -26 \rightarrow 24$
$\omega/2\theta$ scans	$k = -1 \rightarrow 9$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 11$
$T_{\min} = 0.567, \ T_{\max} = 1.000$	2 standard reflections
3614 measured reflections	every 120 min
1483 independent reflections	intensity decay: 4%
1070 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.120$	$w = 1/[\sigma^2(F_o^2) + (0.051P)^2 + 1.9759P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.15	$(\Delta/\sigma)_{\text{max}} = 0.002$
1483 reflections	$\Delta \rho_{max} = 0.59 \text{ e } \text{\AA}^{-3}$
109 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

P Extinction correction: none methods

sup-2

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Br1	0.59010(3)	0.5000	0.98075 (8)	0.0748 (3)	
01	0.8758 (2)	0.5000	1.3330 (4)	0.0636 (10)	
O2	0.92499 (17)	0.5000	1.1618 (4)	0.0572 (9)	
O3	0.7377 (2)	0.5000	1.2234 (4)	0.0630 (10)	
H3	0.7785	0.5000	1.2911	0.076*	
C1	0.7968 (2)	0.5000	0.9059 (5)	0.0468 (11)	
H1	0.8385	0.5000	0.8924	0.056*	
C2	0.8008 (2)	0.5000	1.0587 (5)	0.0417 (10)	
C3	0.7380 (3)	0.5000	1.0790 (5)	0.0449 (11)	
C4	0.6740 (2)	0.5000	0.9467 (6)	0.0445 (11)	
C5	0.5989 (2)	0.5000	0.6514 (6)	0.0544 (12)	
H5A	0.5761	0.3798	0.6447	0.065*	0.50
H5B	0.5689	0.5955	0.6655	0.065*	0.50
C6	0.6056 (4)	0.536 (5)	0.4988 (8)	0.084 (10)	0.50
H6A	0.5871	0.4255	0.4348	0.101*	0.50
H6B	0.5726	0.6367	0.4470	0.101*	0.50
C7	0.6621 (3)	0.5774 (12)	0.4855 (7)	0.062 (2)	0.50
H7A	0.6656	0.7128	0.4853	0.074*	0.50
H7B	0.6572	0.5338	0.3834	0.074*	0.50
C8	0.7335 (3)	0.5000	0.6118 (6)	0.0624 (15)	
H8A	0.7408	0.3734	0.5841	0.075*	0.50
H8B	0.7722	0.5770	0.6136	0.075*	0.50
C9	0.7332 (2)	0.5000	0.7743 (5)	0.0432 (10)	
C10	0.6699 (2)	0.5000	0.7937 (5)	0.0422 (10)	
C11	0.8699 (3)	0.5000	1.1980 (6)	0.0492 (11)	
C12	0.9947 (3)	0.5000	1.2930 (6)	0.0611 (14)	
H12A	1.0005	0.3897	1.3578	0.073*	0.50
H12B	1.0005	0.6103	1.3578	0.073*	0.50
C13	1.0479 (3)	0.5000	1.2249 (7)	0.085 (2)	
H13A	1.0946	0.5000	1.3084	0.127*	
H13B	1.0416	0.6098	1.1613	0.127*	0.50
H13C	1.0416	0.3902	1.1613	0.127*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Br1	0.0585 (4)	0.0930 (5)	0.0924 (5)	0.000	0.0507 (3)	0.000
01	0.066 (2)	0.083 (3)	0.0402 (18)	0.000	0.0209 (17)	0.000
O2	0.0413 (17)	0.083 (3)	0.0418 (18)	0.000	0.0119 (14)	0.000
O3	0.067 (2)	0.080 (3)	0.054 (2)	0.000	0.0383 (18)	0.000
C1	0.041 (2)	0.055 (3)	0.047 (2)	0.000	0.020 (2)	0.000
C2	0.047 (2)	0.038 (2)	0.042 (2)	0.000	0.021 (2)	0.000
C3	0.056 (3)	0.034 (2)	0.054 (3)	0.000	0.032 (2)	0.000
C4	0.043 (2)	0.038 (2)	0.061 (3)	0.000	0.031 (2)	0.000
C5	0.035 (2)	0.060 (3)	0.066 (3)	0.000	0.018 (2)	0.000
C6	0.049 (4)	0.13 (3)	0.054 (4)	0.023 (9)	0.006 (3)	0.021 (9)
C7	0.051 (4)	0.085 (6)	0.042 (3)	0.000 (4)	0.013 (3)	0.002 (3)
C8	0.048 (3)	0.099 (4)	0.040 (2)	0.000	0.018 (2)	0.000
C9	0.040 (2)	0.049 (3)	0.043 (2)	0.000	0.020 (2)	0.000
C10	0.040 (2)	0.034 (2)	0.054 (3)	0.000	0.021 (2)	0.000
C11	0.054 (3)	0.047 (3)	0.045 (3)	0.000	0.019 (2)	0.000
C12	0.048 (3)	0.082 (4)	0.042 (3)	0.000	0.008 (2)	0.000
C13	0.045 (3)	0.140 (7)	0.058 (3)	0.000	0.011 (3)	0.000

Geometric parameters (Å, °)

700 700 63 (8) 700
700 63 (8) 700
63 (8) 700
700
/00
700
25 (6)
63 (8)
700
700
05 (6)
92 (8)
700
700
600
600
600
.8
7.1
.7 (4)
.7 (4)
4 (6)
0.5

C1—C2—C11	121.4 (4)	C7 ⁱ —C8—H8A	71.0
C3—C2—C11	119.9 (4)	С7—С8—Н8А	109.5
O3—C3—C4	119.0 (4)	С9—С8—Н8В	109.5
O3—C3—C2	122.1 (4)	C7 ⁱ —C8—H8B	137.3
C4—C3—C2	118.8 (4)	С7—С8—Н8В	109.5
C3—C4—C10	122.5 (4)	H8A—C8—H8B	108.1
C3—C4—Br1	117.2 (3)	C1—C9—C10	119.1 (4)
C10—C4—Br1	120.3 (3)	C1—C9—C8	119.2 (4)
C6 ⁱ —C5—C6	20 (3)	С10—С9—С8	121.7 (4)
C6 ⁱ —C5—C10	112.7 (4)	C4—C10—C9	118.3 (4)
C6—C5—C10	112.7 (4)	C4—C10—C5	121.2 (4)
C6 ⁱ —C5—H5A	91.3	C9—C10—C5	120.6 (4)
С6—С5—Н5А	109.1	O1—C11—O2	122.9 (5)
С10—С5—Н5А	109.1	O1—C11—C2	123.5 (5)
C6 ⁱ —C5—H5B	124.6	O2—C11—C2	113.6 (4)
C6—C5—H5B	109.1	O2—C12—C13	107.2 (4)
С10—С5—Н5В	109.1	O2—C12—H12A	110.3
H5A—C5—H5B	107.8	C13—C12—H12A	110.3
C7—C6—C5	126.0 (6)	O2—C12—H12B	110.3
С7—С6—Н6А	105.8	C13—C12—H12B	110.3
С5—С6—Н6А	105.8	H12A—C12—H12B	108.5
С7—С6—Н6В	105.8	С12—С13—Н13А	109.5
С5—С6—Н6В	105.8	С12—С13—Н13В	109.5
H6A—C6—H6B	106.2	H13A—C13—H13B	109.5
C6—C7—C8	118.2 (11)	С12—С13—Н13С	109.5
С6—С7—Н7А	107.8	H13A—C13—H13C	109.5
С8—С7—Н7А	107.8	H13B—C13—H13C	109.5
С6—С7—Н7В	107.8		
Symmetry codes: (i) x , $-y+1$, z .			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O3—H3…O1	0.82	1.90	2.620 (5)	146

